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Abstract 

This work combines Markowitz–Sharpe and Black–Scholes models in such a way as to take 

advantage of the best of both worlds, by introducing a multi-asset continuous time framework for Monte 

Carlo simulations. Such a framework takes into account any costs, including taxation, and allows for 

shocks in both return and volatility, thus becoming a convenient background for the search of quasi-

optimal investment strategies via genetic algorithms.  This allows for an efficient portfolio management, 

which keeps the overall risk low due to a Markowitz diversification, while taking advantage of the market 

fluctuations perceived by the Black–Scholes model. Numerical results, based on real data from 2005 to 

2009 for a “blue chips” portfolio in the BOVESPA stock exchange, show a definite improvement over a 

CAPM “buy-and-hold" pure strategy. 

 

Introduction 

Modern portfolio theory provides optimal asset diversification from the risk–return viewpoint. 

The cornerstone of this theory was laid down by Harry Markowitz (Markowitz, 1952) in a seminal work 

that was soon followed, expanded and complemented by many other authors. A major contribution was 

made by William Sharpe (Sharpe, 1964), whose Capital Asset Pricing Model (CAPM) is now a market 

standard for massive investors on the long run. A multifactor generalization of CAPM, the Arbitrage 

Pricing Theory (APT), was later introduced by Stephen Ross (Ross, 1976).  

                                                           
1 Professor do Instituto de Ciências Exatas da Universidade Federal de Minas Gerais, Belo Horizonte, Brasil. 
–Professor do Ibmec — Minas Gerais, Belo Horizonte, Brasil.  
–Pesquisador do Instituto de Pesquisa em Finanças & Investimentos, Belo Horizonte, Brasil. 



However, all classical models of portfolio theory consider only one single time period and rely 

implicitly on a “buy and hold” approach. They provide no help for asset managers over time, as no 

rebalancing strategy is produced. Indeed, it was quickly pointed out that Markowitz model is not suitable 

for repeated investments (Kelly Jr., 1956). Moreover, for any given risky asset, it is almost impossible to 

have reliable return expectations and its volatility changes quite often. Even worse, the one fund that 

would lead to optimal investment is computationally unstable, so that the smallest discrepancy in the risk-

return estimates of any of the assets in the portfolio results in a completely different optimal portfolio. 

Therefore, despite its philosophical soundness and mathematical elegance, Markowitz model is not useful 

at all for most traders, as it exposes them to estimation risks that cannot be avoided and are hard to 

evaluate properly. Nevertheless, the model shed a new light to financial theory, as it points out the 

importance of risk management in investment decisions. 

As for the CAPM, many restrictions do apply. To begin with, the hypotheses of the model are 

really hard to believe. Even worse, the model does not allow for any fundamentalist analysis, as it simply 

prescribes the purchase of a little bit of every available asset — this does not seem very wise, as one puts 

the good, the bad and the ugly companies all in the same basket. Moreover, the beta of any risky asset 

cannot be consistently used by traders for investment decisions, since its behavior is not statistically 

reliable. Most curiously, CAPM turns out to make sense for huge investors, for whom the model 

hypotheses sound pretty fair and who cannot easily get too far away from the market portfolio, which does 

not depend on the betas anyway. Also, empirical data shows that, in practice, CAPM is not at all easy to 

outperform. Together with its computational simplicity and the deep insight on the risk structure of 

interest rates, this is one of the reasons why CAPM is by far the most important model of modern finance. 

The APT model generalizes CAPM to a multi-index framework. Though the idea sounds great,  

the model is not popular at all, as it requires a much larger econometric and computational effort, while 

resulting in little (if any) improvement over CAPM. 

On the other hand, the Black–Scholes model, based on arbitrage theory and stochastic calculus, 

makes an extremely rich description of an asset price over time as a geometric Brownian motion, though it 

is not particularly useful for diversification. Further generalization, using Lévy processes, allows for the 

handling of non-lognormal assets. The model is the cornerstone of continuous time finance theory, which 

also received major contributions by Merton. However, the model applies only to one single asset and 

derivatives over it. 



Anyway, both approaches are extremely sound, not only philosophically but also in practice, as 

they also give traders much qualitative insight, defining the parameters on which they operate. Moreover, 

they set the modern standards on which investment is conceived, made and analyzed, not only 

theoretically but also in terms of regulation, thus becoming landmarks of modern finance. With much 

merit, Markowitz and Sharpe were awarded the prestigious Nobel Prize in Economics in 1990, while 

Scholes and Merton received the same distinction in 1997.  

Many attempts to combine these models were made along the past decades, however with little 

progress. So far, the mathematical complexity of the probabilistic structure of multidimensional Brownian 

motion has not allowed for any relevant theoretical or numerical improvements. A remarkable initiative 

was the Log-Optimal model, developed by David Luenberger in the early 1990’s (Luenberger, 1998), 

which imbued Markowitz model with some long-term wisdom from Black-Scholes analysis. 

Unfortunately, Luenberger’s model turns out to be equivalent to Markowitz model for most traders that 

know better, giving them no additional insight, nor any help for rebalancing portfolios on the long run. 

As for the use of evolutionary algorithms in financial optimization, it was pioneered by Richard 

Bauer in the early 1990’s (Bauer Jr., 1994). His work, however, focuses on the determination of optimal 

parameters for a prescribed trading strategy — the strategy itself remains the same all along — and does 

not consider dynamics of asset prices, taking into account only historical data. 

One last advance in the use of genetic algorithms in financial optimization that must be mentioned 

is the work of Yang (Yang, 2006), which, in addition to historical information, incorporates future 

uncertainty by using binomial trees to enhance the accuracy of returns estimations. The method is very 

expensive in computational terms, not allowing for real time applications. Again, the investment strategy 

remains the same the whole time, just with optimal parameters, such as in Bauer’s work. 

This work significantly improves Yang’s results by replacing binomial trees by the appropriate 

multidimensional stochastic differential equations system, which allows for simulations that take into 

account historical data, fundamentalist analysis and future uncertainty, resulting in a combination of 

Markowitz and Black–Scholes models in such a way as to take advantage of the best of both worlds, by 

introducing a multi-asset continuous time framework for Monte Carlo simulations. This sets the perfect 

background for the search of quasi-optimal investment strategies via genetic algorithms, resulting in an 

efficient asset management, which keeps the overall risk low with a Markowitz diversification while taking 

advantage of market fluctuations perceived by the Black–Scholes model. Numerical results for a “blue 

chips” portfolio in the BOVESPA stock exchange show a definite improvement over “buy-and-hold”. 



Multidimensional Brownian Motion 

 

Black-Scholes analysis assumes that the price ���� of an asset follows an Ito process: ��� = � �� + 
�√�� 
Here � is the expected return of the asset and 
 is its volatility, whereas � is a normally distributed random 
variable. All the analysis is based upon this stochastic differential equation, which is easily generalized by 

considering that � follows a Lévy process instead, i.e., that � has any stable distribution.  
Lévy processes have a considerably more elaborate mathematical structure, which makes them 

hard to treat from the algebraic viewpoint, though it makes little difference on any numerical treatment. 

Therefore, the stochastic differential equation is well fit for Monte Carlo simulation, as it becomes the 

receipt to generate random paths of the Lévy process: ��� = � + �� ∆� + 
��√∆� 
Realizations of the stochastic process produced this way (FIGURE 1) can then be used to test trading 

strategies including both the asset and derivatives over it. 

Now, if a portfolio of � assets is considered, with prices �����, �����, �����, … and �����, then 
those prices follow a system of stochastic differential equations: 

���
�
���

����� = �� �� + 
���√������� = �� �� + 
���√��⋮����� = �� �� + 
���√��
� 

The corresponding difference equations system is a receipt to generate multidimensional random 

realizations of the combined process:  

���
�� ��,�� = ��, + ����, ∆� + 
���,��√∆���,�� = ��, + ����, ∆� + 
���,��√∆�⋮��,�� = ��, + ����, ∆� + 
���,��√∆�

� 
The method devised in this paper relies upon such equations to generate Monte Carlo 

simulations. This solution is noticeably simple, so that the total computing time is fairly small, allowing for 

an overhead optimization process of trading strategies by genetic algorithms to happen even in real time. 



The Correlation Matrix 

 

The major difficulty in handling such a system is that the random variables ��, ��, ��, … and �� are 
not independent. Thus the prices realizations cannot be generated independently. (Note that even if the 

random variables ��, ��, ��, … and �� are all normally distributed, the combined distribution is not a 
multidimensional normal distribution.) 

Indeed, the asset prices are almost always correlated, as shown in Markowitz model. All in all, the 

correlation matrix is the key point of Markowitz model. It is important to point out that, while the 

covariance matrix is computationally unstable, the correlation matrix is not. The reason for this is that the 

covariance reflects the instability on the assets’ volatilities, while the correlation correlation expresses 

structural connections among companies and assets (the sectors on which companies operate, the 

commodities their business rely on, the currencies they trade with, the interest rates they are subject to, 

and so on). Thus, though the correlation matrix also changes over time, those changes are slow, small, 

often predictable and their source is usually easily identified in the real world as facts that affects the 

companies involved (accidents or frauds in a given company, deals among companies, etc.), the sectors on 

which they operate (new technologies, new regulations, etc.), the countries they trade in (interest rates, 

inflation, recession, etc.) and the international scenario (global crisis, wars, etc.). 

Therefore, in any reliable simulation of the prices �����, �����, �����, … and ����� the individual 
stochastic processes of the assets of the portfolio must preserve the correlation matrix: 

� = ���,���,� ��,���,� ⋯ ��,�⋯ ��,�⋮ ⋮ ⋱ ⋮��,� ��,� ⋯ ��,�
! 

This work gives an effective solution for the problem of generating normally distributed random 

variables ��, ��, ��, … and �� that will lead to the properly correlated stochastic processes. This is 
achieved by generating auxiliary normally distributed random variables "�, "�, "�, … and "� and applying 
an appropriate linear transformation based upon the correlation matrix obtained from Markowitz model. 

 For instance, according to historical data obtained from Economática, ordinary stocks of 

Petrobras (PETR3) traded in the BOVESPA and spot gold contracts (OZ1DIS) traded in the BM&F 

have the following correlation matrix: 

� = # 1 −0,1867−0,1867 1 * 



Let  "� and "� be two normally distributed independent random variables
corresponding Ito process will just be the identity matrix, instead of 

#����* =
It is easy to see that both �� and 
correlation matrix. These random variable

are perfectly fit for the desired Monte Carlo simulations.

The situation in �-dimensional Brownian motion is similar that of 
can be summarized in the following theorem (the proof is omitted for sake of brevity):

THEOREM: Given any correlation matrix 

 and "�  are normally dis

 are normally distributed random variables that have 

It is important to remark that the transformation 

preferable in different situations. In the example above, 

taken as a lower triangular, saving almost half the time consumed in the matrix multiplication.

In any case, this solution is noticeably simple to compute

computational cost is just one matrix multiplication for each step)
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Risk and Return Estimates 

 

Once the random variables ��, ��, ��, … and �� are properly generated, it is necessary to set the 
appropriate returns and volatilities. One of the major advantages of the method devise here is that such a 

framework allows for shocks in both return and volatility. This is done by letting both the �’s and the 
’s 
vary over time, sometimes rather abruptly. 

Unlike other models where the �’s and the 
’s are set constant and equal to their historical 
averages, this model considers historical market data only to estimate the returns’ and volatilities’ range 

and elasticity, as well as to set the initial values of the 
’s as the current market volatilities. 
On the other hand, the initial �’s must be set using both historical data and parameters from 

fundamentalist analysis, such as the Tobin’s 2’s. As noted by Dixit and Pindyck (Dixit, 1994), the 
principle underlying Tobin’s 2 is the orthodox net present value theory and, as Romer analysis clearly 
shows (Romer, 2001), “2 summarizes all information about the future that is relevant to a firm’s 
investment decision”. Other fundamentalist indicators are also taken into account, not only those 

concerning each company, but also those related to the sectors and countries in question. 

After the initial setting of risk and return parameters, �’s and the 
’s will be altered throughout the 
simulation according to specific rules that consider both the fundamentalist indicators available and 

random fluctuations, including random shocks. 

The shocks are all treated from a CAPM point of view and are considered to be of one of two 

kinds: specific (diversifiable), affecting only one asset, or systematic (nondiversifiable), affecting a whole 

sector, country or the world. Empirical results show that the all-time average 3’s are reliable, easy-to-use 
parameters to spread systematic risk shocks throughout simulations. 

It is important to note that fundamentalist analysis is implicitly implicated from the start in the 

model devised here, as it is supposed to be used in the initial selection of assets to be considered for 

investment. Indeed, the approach assumed here is plain orthodox and has conservative investors in mind. 

The method’s capacity to imbue highly complex numerical procedures with fundamentalist, 

micro- and macroeconomic analysis is certainly one of its most distinctive features. Nevertheless, the 

method works just fine if all that information is simply neglected, though the strategies produced will lack 

the ability to profit from a few high quality analyses (on the other hand, they will not be jeopardized by a 

few bad analyses either).   



Utility Function for Investment Strategies 

 

Of course, the idea of testing strategies over past real world data is irresistible, but any 

optimization method over those tests will eventually lead to a “crystal ball for the past” strategy that will 

probably prove no so good for the future. Indeed, optimization over one scenario only will always result in 

the best strategy for that one scenario only and, unless the future repeats the past perfectly, this strategy is 

likely to be no better than any random strategy. 

Therefore, it is highly desirable to set a simulation framework that allows for the generation of 

thousands of possible, reasonable scenarios that can be used to test strategies. And it is exactly this that 

was achieved above.  

Now that a framework has been established for testing investment strategies, it is time to define 

what makes a strategy better than other. In other words, it is time to define a utility function that will be 

used for rating strategies. Many choices are possible, according to each investor risk profile. In this work, 

the long-term average return over all simulated scenarios was taken as the utility function: 

4�5� = �6�5� − 
7��5�2  

 where 5 is any given trading strategy.  
This utility function is so because, on the long run, risk affects return (negatively). The corrected 

long-term return is the geometric average of the individual one-period returns, corresponding to the 

lognormal arithmetic average of the return. This is very clear from stochastic calculus, as noted by 

Luenberger in his Log-Optimal model(Luenberger, 1998).  

It is important to point out that the method devised here can easily accommodate a multi-

objective optimization so that several different utility functions can be used simultaneously. Although 

maximum long-term return is sure to be an objective for all wise investors, it is likely that asset managers 

will also set out short-term goals, maximum risk tolerances and other objectives. 

It is also noteworthy that some conditions can be embedded in the testing algorithm itself, such as 

taxation, transaction costs and trading restrictions. For instance, most investment clubs at the BOVESPA 

are required to have at least half their money on stocks at any given time, so that only those strategies may 

be considered from the start. 

 



The Genetic Algorithm 

 

A genetic algorithm is an optimization technique that emulates a natural evolutionary process that, 

over the generation, selects the individuals best adapted to their environment. The algorithm starts with 

an initial population, which is ranked by a selection criterion; then the best fit individuals pass their 

characteristics on to their offspring through reproduction and a new generation is formed; the process 

repeats itself over and over until a stop condition is reached. There are no a priori limits on how many 

factors to take into account, on how large the populations should be or on how many generations to 

produce, as long as one is willing to take the programming effort to encode all the details and wait for the 

algorithm to run. 

In this work, individuals are trading strategies. Those strategies have definite characteristics such 

as preset conditions that precisely establish when to trade (starts, stops, etc.), what to trade (asset 

selection), what to do (buy, sell, short, long, etc.), how much to trade, etc. The steps are as follows: 

STEP 1: INITIAL POPULATION 

 An initial population of 200 strategies, that includes traditional trading strategies (such as  

 “buy-and-hold”), strategies from selected traders and randomly generated strategies. 

 

STEP 2: SELECTION CRITERIA 

 The section criterion is the utility function mentioned in the previous section, using the

 Monte Carlo simulation framework devised above. The best adapted individuals are those 

 strategies that score the highest values of the utility function. 

 

STEP 3: REPRODUCTION 

 Reproduction is made both by crossover (sex) and cloning, with a few random mutations. A 

 new generation is formed as follows: the top ranking 20 strategies were simply cloned; the 

 other 180 strategies were obtained by combining the whole population in pairs, and mixing

 their characteristics. (The probability of coupling was taken proportionally to the strategy 

 ranking.) Finally, random mutations were introduced in 10 randomly selected individuals.  

 

STEP 4: ITERATION 

 The new generation is then taken back to STEP 1 and the process is repeated, up to 30 

 generations or until no improvement whatsoever is made for at least 3 generations.  



Results 

 

The genetic algorithm runs with great efficiency, even on small personal computers. Simulations 

started with the generation of 10,000 scenarios and then run the genetic algorithm for up to 30 

generations. The whole process usually took no longer than 2 minutes, as most of the populations 

converged not much after 20 generations. 

One interesting result to mention is that “buy-and-hold” almost always ranks within the top 10 

trading strategies throughout the generations when only one asset is considered. However, when two or 

more assets are used, “buy-and-hold” hardly ever stood up till the end of the process. Instead, a Markowitz 

portfolio with a little pumping, so that the weights of all assets remain constant over time, appeared quite 

often, though the best strategies outperformed it up to 30% a year. 

In a few cases, such as the one shown bellow (FIGURE 2) an optimized strategy led to a portfolio 

that even surpassed the return of the best performing stock in the period. It is important to mention that 

the strategy was obtained using only data and analyses from the previous time period. 

 

FIGURE 2 — The performance of a quasi-optimal strategy for 3 assets. 

 

Finally, some of the strategies obtained by using this method for one asset alone are already being 

effectively tested in the BOVESPA. For instance, since October 29, 2009, a strategy for trading PETR3 is 

in use by Clube de Investimento Savassi, an investment club whose portfolio is managed by the author. 

Ever since, the club has earned a net profit of 1,67% on that stock, despite of a price drop of 19,47% for 

that asset. Preliminary analyses show that the actual results really confirm the computer simulations.  
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Conclusion 

 

The method devised here significantly improves previous results on portfolio management. The 

simulations base upon multidimensional stochastic differential equations system works well, allowing for a 

promising combination of the mainstream models of modern finance and economic theory. 

Numerical results are currently being confirmed by actual market operations, achieving a definite 

improvement over “buy-and-hold” for small and mid-sized portfolios. Such success is not expected to 

apply to huge investors, for which CAPM is still the way to go. 

The best feature of the method is that it allows investors to trade the way they like, as they can 

simply input their current trading strategy and have it enhanced by setting optimal operational parameters 

and perhaps also profiting from sound analyses. 

Further enhanced applications of this method are expected for the near future as new parameters 

are yet to be programmed and scientific cooperation with world-class economists can still improve the 

model a lot. 

Theoretical advances towards the combination of Markowitz and Black–Scholes models are also 

expected for the future.  
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